20/w scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.749, T_{\text {max }}=0.833$
3618 measured reflections
3618 independent reflections
$\theta_{\text {max }}=26.47^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 17$
$l=0 \rightarrow 11$
3 standard reflections every 100 reflections intensity decay: $<1 \%$

Refinement

Refinement on F
$R=0.056$
$w R=0.070$
$S=1.433$
3180 reflections
192 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}(F)+0.005 F^{2}\right]$
$(\Delta / \sigma)_{\max }=0.0029$
$\Delta \rho_{\text {max }}=1.11 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.52$ e \AA^{-3}
Extinction correction: none

Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure: all Bijvoet pairs of reflections were measured and used for determination of the absolute structure; the final absolute structure is the one which converged the Rogers parameter, η, to 1.01 (6)

References

Alcock, N. W. \& Roberts, M. M. (1987). Acta Cryst. C43, 476-478.
Al-Karaghouli, A. R., Day, R. O. \& Wood, J. S. (1978). Inorg. Chem. 17, 3702-3706.
Baran, P., Koman, M., Valigura, D. \& Mrozinski, J. (1991). J. Chem. Soc. Dalton Trans. pp. 1385-1390.
Gilmore, C. J. \& Brown, S. R. (1988). Acta Cryst. A44, 1018-1021.
Iwata, M., Nakatzu, K. \& Saito, Y. (1969). Acta Cryst. B25, 25622571.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kanno, H., Kashiwabara, K. \& Fujita, J. (1979). Bull. Chem. Soc. Jpn, 52, 761-765.
Kanno, H.. Yamamoto, J., Utsuno, S. \& Fujita, J. (1996). Bull. Chem. Soc. Jpn, 69, 665-671.
Kanno, H., Yano, T., Sato, K., Utsuno, S. \& Fujita, J. (1997). Bull. Chem. Soc. Jpn, 70. 1085-1091.
Koman, M., Baran, P. \& Valigura, D. (1991). Acta Cryst. C47, 25292531.

MacScience Co. Ltd (1989). Operation Manual of MXC Four-Circle Diffractometer. MacScience Co. Ltd, Yokohama, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Col-O}$	1.910 (3)	C2-C3	1.408 (6)
Col-N11	1.976 (4)	C3-C4	1.401 (6)
Col-N14	1.953 (4)	C3-O2	1.337 (6)
$\mathrm{Ol}-\mathrm{Nl}$	1.365 (4)	C4-C5	1.364 (6)
$\mathrm{N} 1-\mathrm{Cl}$	1.342 (5)	O2-C6	1.456 (7)
N1-C5	1.361 (5)	N11-C12	1.492 (7)
$\mathrm{Cl}-\mathrm{Cl}^{1}$	1.478 (5)	C12-Cl3	1.461 (8)
$\mathrm{Cl}-\mathrm{C} 2$	1.381 (6)	C13-N14	1.484 (7)
$\mathrm{Ol}-\mathrm{Col}-\mathrm{Ol}^{1}$	91.3 (2)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	120.8 (4)
$\mathrm{Ol}-\mathrm{Col}-\mathrm{Nil}$	177.1 (2)	$\mathrm{C} 1-\mathrm{Cl}-\mathrm{C} 2$	120.3 (4)
O1-Col-N11	85.8 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	118.5 (4)
$\mathrm{Ol}-\mathrm{Col}-\mathrm{Nl} 4$	94.6 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.4 (4)
O1-Col-N14	87.6 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	124.0 (4)
N11-Col-N11	97.1 (2)	C4-C3-O2	116.7 (4)
$\mathrm{N} 11-\mathrm{Col}-\mathrm{N} 14$	85.6 (2)	C3-C4-C5	119.3 (4)
$\mathrm{N} 11-\mathrm{Col}-\mathrm{N} 14{ }^{1}$	92.3 (2)	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	120.5 (4)
N14-Col-N14'	176.9 (2)	C3-O2-C6	118.3 (4)
$\mathrm{Col}-\mathrm{Ol}-\mathrm{Nl}$	115.8 (3)	$\mathrm{COl}-\mathrm{N} 11-\mathrm{Cl2}$	107.6 (3)
O1-N1-Cl	119.6 (3)	N11-C12-C13	106.3 (5)
O1--N1-C5	118.8 (3)	$\mathrm{C} 12-\mathrm{Cl3}-\mathrm{N} 14$	107.9 (5)
$\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 5$	121.4 (4)	$\mathrm{Col}-\mathrm{N} 14-\mathrm{Cl} 3$	108.1 (3)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{Cl}^{\prime}$	118.9 (4)		

Symmetry code: (i) $x,-y,-z$.
The title structure was solved by direct methods and refined by full-matrix least-squares calculations using CRYSTAN$G M$ (Gilmore \& Brown, 1988). H atoms were placed in geometrically idealized positions, with distances of $0.96 \AA$, and the equivalent isotropic displacement parameters were fixed at $0.06 \AA^{-2}$.

Data collection: MXC Operation Manual (MacScience Co. Ltd, 1989). Cell refinement: MXC Operation Manual. Data reduction: CRYSTAN-GM. Program(s) used to solve structure: CRYSTAN-GM. Program(s) used to refine structure: CRYSTANGM. Molecular graphics: CRYSTAN-GM. Software used to prepare material for publication: CRYSTAN-GM.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1050). Services for accessing these data are described at the back of the journal.

Acta Cryst. (1998). C54, 1085-1087

Carbonyl(1,3-diphenyl-1,3-propanedionato$\left.O, O^{\prime}\right)(4-m e t h y l-2,6,7-$ trioxa-1-phospha-bicyclo[2.2.2]octane-P)rhodium(I)

Johannes J. C. Erasmus, ${ }^{a}$ Gert J. Lamprecht, ${ }^{a}$ Takamitsu Kohzuma ${ }^{b}$ and Yoshiharu Nakano ${ }^{b}$
"Department of Chemistry, University of the Orange Free State, Bloemfontein 9300, South Africa, and ${ }^{b}$ Department of Chemistry, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310, Japan. E-mail: erasmusj@cem.nw. uovs.ac.za
(Received 22 September 1997; accepted 9 February 1998)

in $\left[\mathrm{Rh}(\mathrm{DBM})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (DBM is the 1,3 -diphenyl1,3 -propanedionate ion), the title compound [$\mathrm{Rh}(\mathrm{DBM})$ (CO) $\left.\left\{\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CCH}_{3}\right\}\right]$, (I), was prepared by introducing the bicyclic phosphite ester as a strong π-acceptor ligand.

(I)

The structure of (I) is shown in Fig. 1. The compound exhibits square-planar geometry about the Rh atom. The carbonyl ligand is considered to be linear, with an $\mathrm{Rh}-\mathrm{C} 16-\mathrm{O} 3$ angle of $179.4(5)^{\circ}$. The larger trans influence of the phosphite ligand in comparison with the carbonyl ligand is illustrated in the difference of $0.028 \AA$ between $\mathrm{Rh}-\mathrm{O} 2$ [2.059 (3) \AA] and $\mathrm{Rh}-\mathrm{Ol}$ [2.031 (3) A A]. This tendency has been observed previously in the triphenylphosphine analogue $\left[\operatorname{Rh}(\mathrm{DBM})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (Lamprecht et al., 1997), as well as in the acetylacetonate (ACAC) complex [Rh(ACAC)(CO) $\left(\mathrm{PPh}_{3}\right)$] (Leipoldt et al., 1978). The enhanced π-accepting ability of the bicyclic phosphite ligand compared with triphenylphosphine is clearly demonstrated in the difference of $0.072 \AA$ between the $\mathrm{Rh}-\mathrm{P}$ bond distances in the title compound [2.1690(11) \AA] and in $\left[\mathrm{Rh}(\mathrm{DBM})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right][2.241$ (5) \AA, representing the average distance in two crystallographically independent molecules; Lamprecht et al., 1997].

Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title compound showing the atom-numbering scheme. Displacement ellipsoids correspond to the 30% probability level.

Back donation to the phosphite ligand tends to reduce electron density on the central metal atom to a larger extent compared with PPh_{3}, leading to a weakened ability to reduce the carbonyl bond order in the case of the title compound. This is demonstrated by comparing the carbonyl stretching frequency ($\nu_{\mathrm{CO}}=$ $1992 \mathrm{~cm}^{-1}$) with those observed in the case of the triphenylphosphine analogue ($\nu_{\mathrm{CO}}=1972$ and $1982 \mathrm{~cm}^{-1}$ representing the two molecules in the asymmetric unit).

The small Tolman (1977) cone angle of the caged phosphite (101°) compared with $\mathrm{PPh}_{3}\left(145^{\circ}\right)$ suggests reduced steric interaction in the case of the title compound compared with the PPh_{3} analogue. Very slight rotation about the $\mathrm{Cl}-\mathrm{C} 2$ bond does occur, minimizing steric interaction between the phenyl group and the cis-located phosphite; the dihedral angle between the best plane through atoms $\mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 8, \mathrm{C} 9$ and O 2 , and that through $\mathrm{Cl}-\mathrm{C} 7$ is $14.7(3)^{\circ}$.

Experimental

The title compound was prepared by reacting a well stirred solution of dicarbonyl(1,3-diphenyl-1,3-propanedionato)rhodium(I) ($62 \mathrm{mg}, 0.162 \mathrm{mmol}$; Lamprecht et al., 1984) in 5 ml of a 6:4 mixture of ethanol and acetone with exactly one equivalent of solid resublimed 4-methyl-2,6,7-trioxa-1phosphabicyclo[2.2.2]octane ($26 \mathrm{mg}, 0.176 \mathrm{mmol}$; Heitsch \& Verkade, 1962) at room temperature. Vigorous evolution of carbon monoxide gas indicated substitution of the carbonyl ligand. The bright yellow precipitate which separated after a few minutes was redissolved by heating the stirred solution to ca 323 K . Hot filtration through a short Celite column yielded a dark-yellow concentrated solution which was covered and left to cool down to room temperature. Light-yellow prismatic crystals suitable for X-ray analysis separated after $c a 4 \mathrm{~h}$ (51 mg, ca 63% yield). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{d}): $\delta 0.93$ (s .3 H . CH_{3}), 7.11 (s, 1H. CH). ${ }^{31} \mathrm{P}$ NMR (acetone): $\delta 114.51$ (d, 1P. ${ }^{1} J_{\mathrm{Rh}-\mathrm{P}}=282.03 \mathrm{~Hz}$).

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{P}\right)\right.$ (CO)]
$M_{r}=502.26$
Monoclinic
$P 2_{1} / a$
$a=11.715$ (2) \AA
$b=11.385$ (5) \AA
$c=16.071$ (3) \AA
$\beta=104.57(1)^{\circ}$
$V=2074.6(10) \AA^{3}$
$Z=4$
$D_{x}=1.608 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.605 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in $\mathrm{Na} / \mathrm{H}_{2} \mathrm{O}$ solution

Data collection

Rigaku AFC-7R diffractometer
$\omega-2 \theta$ scans
Absorption correction: $\dot{\psi}$ scan (North et al., 1968)
$T_{\text {min }}=0.550, T_{\text {max }}=0.830$
5179 measured reflections 4764 independent reflections

Mo K a radiation
$\lambda=0.7107 \AA$
Cell parameters from 24
reflections
$\theta=19.9-20.0^{\circ}$
$\mu=0.933 \mathrm{~mm}^{-1}$
$T=298.2 \mathrm{~K}$
Prismatic
$0.37 \times 0.37 \times 0.20 \mathrm{~mm}$
Light yellow

3720 reflections with

$$
I>2 \sigma(I)
$$

$R_{\mathrm{int}}=0.038$
$\theta_{\text {max }}=27.50^{\circ}$
$h=-14 \rightarrow 15$
$k=0 \rightarrow 14$
$l=-20 \rightarrow 0$
3 standard reflections every 150 reflections intensity decay: 0.76%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.187$
$S=1.175$
4764 reflections
264 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1279 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.924 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.865 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0054 (13)

Scattering factors from International Tables for Crystallography (Vol. C)

Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rigaku Corporation (1995). RigakulAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1997). PLATON. Molecular Geometry and Plotting Program. Version of November 1997. University of Utrecht, The Netherlands.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Rh-P	2.1690 (11)	$\mathrm{Ol}-\mathrm{Cl}$	1.270 (5)
$\mathrm{Rh}-\mathrm{OI}$	2.031 (3)	O2-C9	1.281 (6)
$\mathrm{Rh}-\mathrm{O} 2$	2.059 (3)	O3-C16	1.139 (6)
$\mathrm{Rh}-\mathrm{Cl} 16$	1.803 (5)	$\mathrm{C} 1-\mathrm{C} 2$	1.496 (6)
$\mathrm{P}-\mathrm{O} 4$	1.587 (4)	C9-C10	1.492 (6)
$\mathrm{P}-\mathrm{O} 5$	1.588 (3)	C20-C21	1.544 (6)
P-06	1.582 (3)		
Ol -Rh-P	91.57(10)	$\mathrm{Cl} 16-\mathrm{Rh}-\mathrm{O} 2$	92.78 (19)
$\mathrm{O} 2-\mathrm{Rh}-\mathrm{P}$	176.07 (11)	O4-P-Rh	114.78 (14)
$\mathrm{O} 1-\mathrm{Rh}-\mathrm{O} 2$	88.06 (14)	$\mathrm{O}-\mathrm{P}-\mathrm{Rh}$	118.03 (13)
$\mathrm{Cl} 16-\mathrm{Rh}-\mathrm{P}$	87.75 (17)	$\mathrm{O} 6-\mathrm{P}-\mathrm{Rh}$	114.36 (13)
$\mathrm{Cl} 6-\mathrm{Rh}-\mathrm{Ol}$	177.4 (2)	O3-Cl6-Rh	179.4 (5)

H atoms were allowed for as riding atoms with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$. The H atoms on the methyl C 21 atom were allowed to rotate but not tip around the $\mathrm{C} 20-\mathrm{C} 21$ bond. The largest positive maximum ($0.924 \mathrm{e}^{\AA^{-3}}$) in the final difference map was at $1.42 \AA$ from the Rh atom and the largest negative minimum $\left(-1.865 \mathrm{e}^{-3} \AA^{-3}\right)$ was at $0.73 \AA$ from the Rh atom.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1995). Cell refinement: Rigaku/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: SAPI91 (Fan, 1991). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 1997). Software used to prepare material for publication: TEXSAN and SHELXL97.

Financial assistance of the South African FRD and the Research Fund of the University of the Free State is gratefully acknowledged.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: FG1391). Services for accessing these data are described at the back of the journal.

References

Fan, H.-F. (1991). SAPI91. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Heitsch, C. W. \& Verkade, J. G. (1962). Inorg. Chem. 1, 392-398.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lamprecht, D., Lamprecht, G. J., Botha, J. M., Umakoshi, K. \& Sasaki, Y. (1997). Acta Cryst. C53, 1403-1405.
Lamprecht, G. J., Leipoldt, J. G. \& van Biljon, C. P. (1984). Inorg. Chim. Acta, 88, 55-58.
Leipoldt, J. G., Basson, S. S., Bok, L. D. C. \& Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.

Iodo(1,10-phenanthroline- N, N^{\prime})(triphenylphosphine)copper(I)

Qiong-Hua Jin, ${ }^{a}$ Xiu-Lan Xin, ${ }^{b}$ Cheng-Jun Dong ${ }^{a}$ and Hui-Ju Zhu ${ }^{a}$
${ }^{a}$ Department of Chemistry, Capital Normal University, Beijing 100037, People's Republic of China, and ${ }^{b}$ Department of Chemical Engineering, Beijing Institute of Light Industry, Beijing 100037, People's Republic of China.
E-mail: liujm@sxx0.math.pku.edu.cn

(Received 4 November 1997; accepted 2 February 1998)

Abstract

In the title complex, $\left[\mathrm{CuI}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, phenanthroline acts as a bidentate ligand coordinating via two N atoms to copper. The coordination polyhedron around the Cu atom is a distorted tetrahedron, with a $\mathrm{Cu}-\mathrm{P}$ distance of 2.1977 (9) $\AA, \mathrm{Cu}-\mathrm{N}$ distances of 2.111 (3) and 2.071 (3) \AA, and a $\mathrm{Cu}-\mathrm{I}$ distance of 2.6157 (6) A.

Comment

In the course of our work on the synthesis of $\mathrm{Mo}(\mathrm{W})-$ $\mathrm{Cu}-\mathrm{S}$ clusters containing large N -donor ligands, the title complex, (I), was prepared and used as one of the reactants.

(I)

The $\left[\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right)\right]^{+}$cation of the title complex (where phen is 1,10 -phenanthroline) can be regarded as being analogous to the $\left[\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ cation of $\left[\mathrm{Cu}(\right.$ phen $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{NO}_{3} .1 .5 \mathrm{EtOH}$, (II) (Kirchhoff et

